
194-430-TPW-001

SDP Toolkit Implementation With
Pathfinder SSM/I Precipitation Rate

Algorithm

Technical Paper

Technical Paper—Not intended for
formal review or government approval.

November 1994

Prepared Under Contract NAS5-60000

RESPONSIBLE ENGINEER

Narayan Prasad /s/ 11/3/94

Narayan S. Prasad, PDPS Scientist/Engineer Date
EOSDIS Core System Project

SUBMITTED BY

Parag Ambardekar /s/ 11/3/94

Parag Ambardekar, PDPS Manager Date
EOSDIS Core System Project

Hughes Applied Information Systems
Landover, Maryland

Name: Parag Ambardekar

Planning & Data Processing System (PDPS) Manager

Hughes Applied Information Systems, Inc.

Landover, MD 20785

As part of the prototyping activities at the ECS Science and Technology Lab (STL), we plan to
acquire, port and run algorithm code from various instruments on the distributed/parallel testbed
and HPCC sites to the extent possible. The purpose of this activity is to assess various processing
technologies (DCE, workstation multiprocessors, MPPs, etc.), evaluate and validate hardware
architecture for PGS, and share lessons learned with the science community. It is also intended to
identify issues for resolution to facilitate algorithm integration and testing. We plan to
communicate the progress on these activities and important lessons learned for hardware
architecture and algorithm integration and testing from time to time through informal reports.

The reports are meant for informal exchange of technical information rather than formal ECS
programmatic status. Consequently the plans for future activities may change based on schedule
and resource constraints. These reports represent a snapshot of PGS activities in ECS STL at a
given time. We do not spend time and resources to polish the reports and present the information
in a logical manner. The attached report is entitled "SDP Toolkit Implementation With Pathfinder
SSM/I Precipitation Rate Algorithm".

Note: PDPS was formerly Product Generation System (PGS)

1 194-430-TPW-001

SDP Toolkit Implementation with Pathfinder SSM/I
Precipitation Rate Algorithm

Narayan Prasad

Marek Chmielowski

(November 1, 1994)

1. Background

The SDP Toolkit is used by the EOS data production software developers and scientists to
encapsulate their science software for implementation in the Distributed Active Archive Center
(DAAC) computing facilities. It provides an interface between instrument data processing
software and the production system environment. Besides the SDP Toolkit facilitating smooth
transition and integration of code into the DAAC by abstracting out science software dependencies
on external system architectures, it must provide superior performance with low overhead, and
should not degrade the performance of the science algorithm.

2. Objective

This study is aimed at studying the performance of the SDP Toolkit with the Pathfinder SSM/I
precipitation rate algorithm (Fortran 77) obtained from NASA/MSFC[1]. The lessons learned
during implementation of the toolkit with the algorithm are outlined. The ability to use toolkit
functions in a parallel symmetric multiprocessing (SMP) environment is also investigated. The
error handling functions in SDP Toolkit 3 do not currently support algorithm execution in a
concurrent processing paradigm such as SMP, Massively Parallel Processing (MPP), Distributed
Computing Environment (DCE), etc. This strategy is aimed at conserving resources that may be
needlessly spent should no instrument team decide to use SMP, MPP, DCE, etc. We will consider
adding such capability to the SDP Toolkit should it be necessary. This additional capability will be
at lower levels in the Toolkit and should not affect the user API. This report outlines strategies
(using compiler directives) that can be applied for using the toolkit even in a concurrent
environment using symmetric multiprocessors. Only a subset of the SDP Toolkit functions that
are relevant to the Pathfinder SSM/I precipitation rate algorithm are used. Nonetheless, this study
validates the use of the SDP Toolkit for science processing.

3. Hardware

An 8-processor SGI Challenge XL (150 MHz) was used to evaluate the performance of the
algorithm with the SDP Toolkit. The CHALLENGE XL is the high-end member of the
CHALLENGE line. The XL server supports coherent shared memory and symmetric
multiprocessing based on 100 MHz and 150 MHz MIPS RISC R4400MC 64-bit
microprocessors. The server can be configured with 2 to 36 CPUs, 64 MB to 16 GB of main
memory, 2 GB to 3.4 TB of disk capacity, one to four 320 MB/sec I/O channels, and 5 to 25
industry-standard VME64 bus slots.

2 194-430-TPW-001

4. Performance Study

The SGI performance profiler was used for the analysis. Table 1 outlines the performance of user
coded toolkit functions. Inclusive time means, time spent within the calling function including all
calls made from it. Exclusive times are not given because the timer resolution did not give
significant digits to quantify measurements accurately. Only toolkit functions relevant to SSM/I
processing have been used. Geolocation, coordinate transformation, and time and date functions

were not evaluated. Approximately 33% of the functions as part of the SDP Toolkit have been
used in the Pathfinder SSM/I precipitation rate algorithm. This algorithm also uses 50% of all
mandatory functions in the SDP Toolkit.

Table 2 lists the performance of toolkit functions that were implicitly tested. They are called by
explicit user coded functions listed in Table 1.

Table 1: Performance of explicitly called toolkit functions

Toolkit Function Mandatory(M)
or Optional(O)

Number of
Function calls

CPU time in
seconds (inclusive)

PGS_PC_GetReference() M 3 0.966

PGS_SMF_SetStaticMessage() M 122 0.544

PGS_PC_GetNumberOfFiles() O 1 0.058

PGS_SMF_SetDynamicMessage() O Used only for
error handling

PGS_SMF_GetMsg() O 1 0.006

PGS_SMF_GetMsgByCode() O Used only for
error handling

PGS_SMF_TestStatusLevel() O Used only for
error handling

PGS_SMF_TestSuccessLevel() O Used only for
error handling

PGS_SMF_TestErrorLevel() O 5 0.000

PGS_SMF_TestFatalLevel() O 2 0.000

PGS_SMF_Test_NoticeLevel() O 6 0.000

PGS_SMF_Test_UserInfoLevel() O 6 0.000

PGS_SMF_SendStatusReport() O 1 Timing is dependent
on network activity

PGS_SMF_SendRunTimeData() O 1 Timing is dependent
on network activity

3 194-430-TPW-001

Table 2: Performance of implicitly called toolkit functions

Toolkit Function Number of
Function
calls

CPU time in
seconds
(inclusive)

PGS_SMF_GetGlobalVar() 261 0.771

PGS_IO_GenOpen() 3 0.659

PGS_PC_GetPCSData 18 0.966

PGS_PC_GetDataAdvancedArea() 18 0.302

PGS_PC_GetPCSDataGetFileName() 6 0.080

PGS_PC_GetPCSDataIndex() 16 0.126

PGS_PC_GetPCSDataGetRequest() 13 0.058

PGS_PC_GetPCSDataLocalEntry() 18 0.508

PGS_PC_GetPCSDataOpenPCSFile() 18 0.092

PGS_PC_GetDataRetrieveData() 8 0.123

PGS_SMF_CreateMsgTag() 1 0.112

PGS_SMF_DecodeCode() 33 0.439

PGS_SMF_ExtractFileInfo() 33 0.006

PGS_SMF_ExtractMsgInfo() 107 0.023

PGS_SMF_GetEnv() 33 0.000

PGS_SMF_GetGlobalVar() 261 0.771

PGS_SMF_WriteLogFile() 33 0.102

4.1 Overall performance

The algorithm embedded with relevant toolkit calls was run in serial mode. Table 3 lists the
performance characteristics. The toolkit did not introduce any significant overhead. Over 90%
CPU utilization indicates that the processor was dedicated to this run.

The algorithm was also run on 8 processors and timed. Using compiler directives, portions of the
algorithm which contained toolkit calls were forced to run only in serial mode (on a single
processor), because the SMF library is not designed to run in parallel. The timing statistics are
shown in Table 4.

At least for the Pathfinder SSM/I algorithm, the serial version of the toolkit library should suffice
in a parallel environment without any major degradation in performance. When the parallel version
of the algorithm was embedded with toolkit calls that use e-mail services, the performance can be

4 194-430-TPW-001

very much dependent on network traffic. Toolkit functions that use e-mail are used to send
notifications of file status, etc. back to the SCFs. Table 5 indicates that with e-mail services, the
algorithm can take ~6 times longer to complete. The CPU utilization drops because the parallel
process is executed quickly on 8 processors, but the process of sending e-mail uses only one
processor while the remaining processors are idle most of the time. We note that current toolkit e-
mail services are directed at SCF development. Their implementation in a production environment
may be quite different. Also, the performance results given here may not be relevent to DAAC
performance.

5. Power Challenge Systems and Implications for SDP Toolkit

The fundamental difference between the CHALLENGE and Power CHALLENGE systems is
that the Power CHALLENGE Server's 64-bit implementation of the IRIX Operating system
supports 64-bit floating point, integer, and addressing capabilities, allowing applications to take full
advantage of the hardware. This environment has implications to the SDP Toolkit which has been
developed for SGI 32-bit architectures.

6. Summary

• The relevant functions from the SDP Toolkit were successfully implemented with
Pathfinder SSM/I precipitation rate algorithm (Fortran 77) without introducing any
noticeable overhead (geolocation, coordinate transformation, and time and date functions
were not implemented). The output products were also verified.

Table 3: Performance characteristics in serial mode

Toolkit Wall clock time (s) User time (s) System time (s) CPU utilization (%)

No 231 217.5 8.6 97

Yes 243 218.0 9.1 93

Table 4: Performance characteristics for parallel mode

Toolkit Wall Clock time (s) User time (s) System time (s) CPU utilization (%)

No 34 183.1 22.6 607

Yes 34 189.4 23.0 601

Table 5: Performance with toolkit functions using e-mail services

Toolkit Wall Clock time (s) User time (s) System time (s) CPU utilization (%)

Yes 203 199.9 62.3 128

5 194-430-TPW-001

• The serial version of the toolkit can be used in a parallel environment. However, portions
of the code that contain toolkit calls must be forced to run only on a single processor by
using parallel compiler directives. At least with the SSM/I algorithm, when the toolkit-
embedded algorithm was run in parallel, there was no noticeable degradation in
performance. This is one alternative for using existing toolkit functions in a parallel
environment.

• Approximately 33% of the functions as part of the SDP Toolkit have been used in the
Pathfinder SSM/I precipitation rate algorithm. This algorithm also uses 50% of all
mandatory functions in the SDP Toolkit.

• When SDP Toolkit functions utilizing e-mail services are used, the performance of the
algorithm is strongly influenced by network traffic. Severe degradation in performance
could occur. We note that current toolkit e-mail services are directed at SCF development.
Their performance in a production environment may be different.

• We note that some SMF functionality involves disk I/O (e.g. writing out a log file). This
operation is inherently serial with current technology. Users should design their algorithms
with non-parallel functions grouped such that the advantages gained by parallelizing the
remaining code are not lost.

7. References

[1] PDPS Prototyping at ECS Science and Technology Laboratory Progress Report #4.
September 1994, ECS Document #194-00569TPW

6 194-430-TPW-001

This page intentionally left blank.

A-1 194-430-TPW-001

Appendix A: Description of SDP Tools Evaluated

Table A1: Process Control Tools

Toolkit Function Description

PGS_PC_GetReference() This tool may be used to obtain a physical reference (file
name or universal identifier) from a logical identifier

PGS_PC_GetNumberofFiles() This tool may be used to determine the number of files
that exist for a particular product group

PGS_PC_GetPCSData() This tool may be used to obtain information concerning
the availability of PGE input files, process ID's, science
software ID's, runtime parameters, etc. (It is no longer a
user API. Users now have higher level functions to
retrieve the required types of data)

Table A2: SMF Tools

Toolkit Function Description

PGS_SMF_GenerateStatReport() This tool is used to write the message string into
error/status logfile. This tool is generally used in
conjunction with PGS_SMF_CreateMsgTag()

PGS_SMF_SetStaticMsg() This tool will provide the means to set a user-defined
error/status message in response to the outcome of some
segment of processing

PGS_SMF_GetMsgByCode() This tool will provide the means to retrieve the message
string corresponding to a specific mnemonic code

PGS_SMF_GetMsg() This tool will provide the means to retrieve previously set
message from the static buffer (PGS_SMF_set..()). It
should be called immediately; otherwise, the intended
message will be overwritten by subsequent calls to set
message routines

PGS_SMF_CreateMsgTag() This tool may be used to generate a unique message
identifier. This identifier must be attached to error/status
message string to facilitate tracking of error/status
messages to module of code within a product executable,
for a unique production run. This tool is generally used in
conjunction with PGS_SMF_GenerateStatReport()

A-2 194-430-TPW-001

Table A2: SMF Tools

Toolkit Function Description

PGS_SMF_SendStatusReport() This tool may be used to transfer error/status report logs
to key monitoring authorities following a production run

PGS_SMF_SendRuntimeData() This tool will provide a means for the user to transmit a
package of run-time data to SCF in the event of an
unhandled system exception. This package may contain
status/error log and volatile temporary files that may be
useful for discerning the problem that may have initiated
the exception. This tool should only be invoked once for
the given process

PGS_SMF_TestErrorLevel() Given the mnemonic status code, this tool will return the
Boolean value indicating whether or not the returned code
has level 'E'

PGS_SMF_TestFatalLevel() Given the mnemonic status code, this tool will return a
Boolean value indicating whether or not the return code
has level 'F'

PGS_SMF_TestSuccessLevel() Given the mnemonic status code, this tool will return a
Boolean value indicating whether or not the return code
has level 'S'

PGS_SMF_TestUserInfoLevel() Given the mnemonic status code, this tool will return a
Boolean value indicating whether or not the return code
has level 'U'

PGS_SMF_TestNoticeLevel() Given the mnemonic status code, this tool will return a
Boolean value indicating whether or not the return code
has level 'N'

PGS_SMF_TestStatusLevel() Given the mnemonic status code, this tool will return a
defined status level constant

PGS_SMF_SetDynamicMsg() This tool will provide the means to set a user-defined
error/status message in response to the outcome of some
segment of processing. The user can also attach a
message string to the defined mnemonic code, thus
overriding the defined message string that was created by
the smfcompile

	1. Background
	2. Objective
	3. Hardware
	4. Performance Study
	4.1 Overall Performance

	5. Power Challenge Systems and Implications for SDP Toolkit
	6. Summary
	7. References
	Appendix A. Description of SDP Tools Evaluated

